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Abstract

We present two related algorithms for flattening (generating polyline approximations for) curves associated with

planar cubic Bézier segments. One flattens the path curve, and the other flattens the left and right offset curves. The

algorithm for flattening path curves yields an average of 67% of the vertices generated by recursive subdivision, while

maintaining flatness to within 4% of the specified value, and runs 37% faster. The algorithm for flattening offset curves

generates 70% of the vertices as the methods based on recursive subdivision, such that 94% of all subsegments fall

within 20% of the flatness criterion. This latter code runs as fast as recursive subdivision.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The output of a flattening algorithm on an input curve

is a polyline approximation for that curve. In this paper,

we present fast algorithms for flattening both the path,

and left and right offset curves of planar cubic Bézier

curve segments. The first algorithm [5] can be used, for

example, for fast rendering of thin Bézier segments, by

rendering the polyline approximation instead, using the

midpoint line algorithm [3]. The second algorithm can

be used for rendering thick Bézier segments, by using the

polyline approximations of the offset curves to form a
e front matter r 2005 Elsevier Ltd. All rights reserve
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polygonal outline of the curve, which can then be filled.

The goal of a polyline approximation is to produce a

minimum set of discrete vertices on a curve, that

partition the curve into disjoint connected subsegments

such that the maximum transverse deviation of each

subsegment curve from its chord—line segment joining

its endpoints—is no greater than a distance, f, called the

flatness. We will call the actual deviation for a

subsegment in a specific approximation the achieved

flatness. Thus, the maximum achieved flatness should be

no greater than f. Clearly, to generate the minimum set

of vertices in the approximating polyline, the achieved

flatness should be close to f for all subsegments. The

advantage of minimizing this set is to improve rendering

speeds, and to reduce the space requirements for display

lists containing curve approximations.

The standard technique for doing this for cubic Bézier

segments is by recursive subdivision [1], wherein the

curve is recursively divided into two subsegments unless

the flatness criterion for the subsegment is met. The
d.
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advantage of recursive subdivision is that the number of

segments generated is variable—depending on the

nature of the curve—rather than being fixed, as in the

case of forward differencing [3]. The problem with

recursive subdivision is that, if the flatness criterion is

exceeded by even a small amount, the division is

performed one more time, with each of the resulting

segments having an achieved flatness of as little as 25%

of f. In the worst case, the number of segments in the

resulting polyline is greater than necessary by a factor of

two. A technique called adaptive forward differencing

was used in [7] to adjust the step size in forward

differencing by factors of two to move along the curve

with more nearly constant velocity. In our algorithm, as

we will see, we avoid such discrete decisions. This

adaptive approach was also used to break the curve into

roughly pixel-sized pieces rather than the linear seg-

ments generated by our algorithm.

A uniformly thick curve can be regarded as having a

path (the curve itself), and two parallel boundary

curves—the offset curves—at a distance called the

half-thickness to the left1 and right of the path.

Generally, the offset curves are analytically very

complex, and an exhaustive compilation of approxima-

tion techniques is found in [2]. The most common

technique, however, is to flatten the path curve into a

series of disjoint curve subsegments, and then calculat-

ing the points perpendicular to the curve at the

subsegment endpoints, and at a distance equal to the

half-thickness. Unfortunately, flattening the path curve

to the flatness criterion, and calculating orthogonal

offset points on either side, generates offset curve chords

which underestimate the flatness on the inside offset

curve sections, and perhaps do not meet the flatness

criterion on the outside sections. Thus, having the same

number of vertices in the polyline approximation for

both offset curves generally does not provide the desired

perceptual smoothness. This effect is exacerbated as the

curve thickness is increased. Another problem is that, on

average, recursive subdivision generates too many path

subsegments because of discrete round-off.

The described algorithms generate the polyline

approximations for the path and offset curves in much

the same way. They iteratively reduce the front end of

the curve by a segment which closely meets the flatness

criterion, thereby minimizing the number of generated

linear segments. Note that the approximating offset

curve polylines for the left and right offset curves are

calculated independently, and may contain a different

number of vertices. A fundamental idea used here is to

approximate small sections of the curve by circular arcs.
1The ‘left’ or ‘right’ of a parametric curve is defined while

looking along the curve in the direction of increasing

parametric value.
A similar idea was independently used in [6] but this

involved very complex computations.

Section 2 gives some mathematical preliminaries for

developing the algorithms. The first task of both

algorithms is to partition the curves near any inflection

points that lie within, or near, the target segment. This

partitioning is described in Section 3. Section 4 develops

the mathematical basis of the algorithm to flatten the

path curve, and gives experimental results for polyline

segment reduction, and run-time performance. The

mathematical basis for flattening of cubic Bézier offset

curves is given in Section 5, which also gives experi-

mental results for polyline segment reduction, and run-

time performance. Section 6 summarizes and presents

conclusions.
2. Mathematical preliminaries

A cubic Bézier curve is defined on four control points

P0ðx0; y0Þ; . . . ;P3ðx3; y3Þ. The parametric equation of the

curve Q ðtÞ ¼ x ðtÞ; y ðtÞð Þ; 0ptp1 is

x ðtÞ ¼ ð1� tÞ3x0 þ 3t ð1� tÞ2x1 þ 3t2ð1� tÞx2 þ t3x3;

y ðtÞ ¼ ð1� tÞ3y0 þ 3t ð1� tÞ2y1 þ 3t2ð1� tÞ y2 þ t3y3:

We now express the equations in terms of coordinates

r and s, with the origin being at P0, the start of the curve

at t ¼ 0, the r-axis being oriented along the velocity

vector of the curve at t ¼ 0 (i.e., toward P1), and the s-

axis being right-handed orthogonal to the r-axis. That is,

r̂ ¼
P1 � P0

P1�j P0j

¼
x1 � x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x0Þ
2
þ ðy1 � y0Þ

2
q ;

0
B@ y1 � y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x0Þ
2
þ ðy1 � y0Þ

2
q

1
CA,

ŝ ¼
y1 � y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x0Þ
2
þ ðy1 � y0Þ

2
q

0
B@ ;

�ðx1 � x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0Þ

2
þ ðy1 � y0Þ

2
q

1
CA.

Thus, a point P(x,y) is transformed into coordinates

P(r,s) as follows:

r ¼ ðP� P0Þ � r̂ ¼
ðx � x0Þ ðx1 � x0Þ þ ðy � y0Þ ðy1 � y0Þ
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0Þ

2
þ ðy1 � y0Þ

2
q ,

s ¼
ðx � x0Þ ðy1 � y0Þ � ðy � y0Þ ðx1 � x0Þ
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0Þ

2
þ ðy1 � y0Þ

2
q .

In this coordinate system, the transformed control

points are P0ðr0; s0Þ; . . . ;P3ðr3; s3Þ, and the parametric

equations of a cubic Bézier curve are

r ðtÞ ¼ ð1� tÞ3r0 þ 3t ð1� tÞ2r1 þ 3t2ð1� tÞ r2 þ t3r3;

s ðtÞ ¼ ð1� tÞ3s0 þ 3t ð1� tÞ2s1 þ 3t2ð1� tÞ s2 þ t3s3;
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which may be restated as

rðtÞ ¼ r0 þ 3ðr1 � r0Þt þ 3ðr2 � 2r1 þ r0Þt
2

þ ðr3 � 3r2 þ 3r1 � r0Þt
3,

sðtÞ ¼ s0 þ 3ðs1 � s0Þt þ 3ðs2 � 2s1 þ s0Þt
2

þ ðs3 � 3s2 þ 3s1 � s0Þt
3. ð1Þ
;

2To subdivide a Bézier curve defined by control points

P0; . . . ;P3 at t define

P0
0 ¼ P0 þ t � ðP1 � P0Þ;P

0
1 ¼ P1 þ t � ðP2 � P1Þ,

P0
2 ¼ P2 þ t � ðP3 � P2Þ,

P00
0 ¼ P0

0 þ t � ðP0
1 � P0

0Þ,

P00
1 ¼ P0

1 þ t � ðP0
2 � P0

1Þ;P
000
0 ¼ P00

0 þ t � ðP00
1 � P00

0Þ.

The control points of the first segment are P0;P
0
0;P

00
0 ;P

000
0 ,

and of the second segment are P000
0 ;P

00
1 ;P

0
2;P3.
3. Inflection points

The curve segment, whether offset or path, is first

partitioned into as many as five sections, each of which

is rendered independently. A cubic parametric curve

may have zero or two inflection points at parametric

values t1 and t2 of the path curve, where t1pt2. A section

surrounding the first inflection point t1 (if it exists), and

specified by parametric ranges ½t�1 ; tþ1 	, where

t�1 ot1otþ1 may be approximated to within the flatness

criterion by a single linear segment, provided t1 � t�1 and

tþ1 � t1 are sufficiently small. A similar section will exist

surrounding the second inflection point, defined by

½t�2 ; tþ2 	. Three sections remain, defined by parametric

ranges ½�1; t�1 	, ½t
þ
1 ; t�2 	 and ½tþ2 ; þ1	. These repre-

sent curved regions which would require a polyline

approximation, and whose curvature is wholly positive

or negative. The Bézier segment we wish to render lies in

the parametric range ½0; 1	 as defined by the control

points, and the segment will be partitioned into the 1–5

curve sections which overlap this ½0; 1	 range. It should
again be noted that the above-defined sections of both

path and offset curves are referred to as ranges in the

parametric value of the path curve.

We now need to find approximations to the

parametric values, t�1 , tþ1 , t�2 and tþ2 . We can

write coordinates of the path curve as parametric

functions

xðtÞ ¼ axt3 þ bxt2 þ cxt þ dx;

yðtÞ ¼ ayt3 þ byt2 þ cyt þ dy;

where, using the Bézier basis matrix, the coefficients in

terms of the control points are

ax ¼ �x0 þ 3x1 � 3x2 þ x3; ay ¼ �y0 þ 3y1 � 3y2 þ y3

bx ¼ 3x0 � 6x1 þ 3x2; by ¼ 3y0 � 6y1 þ 3y2;

cx ¼ �3x0 þ 3x1; cy ¼ �3y0 þ 3y1;

dx ¼ x0; dy ¼ y0:

At inflection points, the component of the accelera-

tion (second derivative of position) perpendicular to the

velocity (first derivative of position) is zero; the cross
product of the two vectors is zero. Thus,

dx

dt
�
d2y

dt2
�

d2x

dt2
�
dy

dt
¼ ð3axt2 þ 2bxt þ cxÞð6ayt þ 2byÞ

� ð6axt þ 2bxÞð3ayt2 þ 2byt þ cyÞ

¼ 6ðaybx � axbyÞt
2 þ 6ðaycx � axcyÞt

þ 2ðbycx � bxcyÞ

¼ 0.

Solving this quadratic equation for t yields

t1 ¼ tcusp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2cusp �

1
3

bycx�bxcy

aybx�axby

� �r
;

t2 ¼ tcusp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2cusp �

1
3

bycx�bxcy

aybx�axby

� �r
;

where

tcusp ¼ �
1

2

aycx � axcy

aybx � axby

� �
,

the parametric positions t1 and t2 of the inflection

points, if they exist (i.e., have real solutions). If the two

inflection points are coincident (or, in practice, very

close), the common point is the cusp point, tcusp.

We now describe the handling of regions surround-

ing inflection points. Here, we subdivide2 the curve

segment at inflection point, t1. Consider the second

subsegment in a local r–s coordinate system, whose

origin is defined at P01 (the inflection point, and the

first control point of the second segment), and whose r-

axis is oriented along the velocity vector at t1, as shown

above. We now switch the meaning of the parametric

variable t to be relative to the second segment (such that

0ptp1).

At inflection points, only the derivative of the accelera-

tion has a component perpendicular to the velocity vector,

and consequently we have r0 ¼ s0 ¼ s1 ¼ s2 ¼ 0. The

transverse portion of Eq. (1) becomes

sðtÞ ¼ t3s3.

If we set s(t) ¼ f and solve for t, we have

tf ¼

ffiffiffiffi
f

s3

3

s
.
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Table 1

Case analysis for inflection points

Case Treatment

½t�1 ; tþ1 	 � ½0; 1	

^ ½t�2 ; tþ2 	 \ ½0; 1	 ¼

Use circular approximation to flatten path and offset sections ½0; t�1 	. Generate linear approximation to

approximate the path and offset sections ½t�1 ; t
þ
1 	. Use circular approximation to flatten path and offset

sections ½tþ1 ; 1	.

0 2 ½t�1 ; tþ1 	

^ ½t�2 ; tþ2 	 \ ½0; 1	 ¼

Generate linear approximation to approximate the path and offset sections ½0; tþ1 	. Use circular

approximation to flatten path and offset sections ½tþ1 ; 1	.

½t�1 ; t
þ
1 	 \ ½t�2 ; t

þ
2 	a

^ ½t�1 ; tþ2 	 � ½0; 1	

Use circular approximation to flatten path and offset sections ½0; t�1 	. Generate linear approximation for the

offset sections ½t�1 ; tcusp	 and ½tcusp; t
þ
1 	. Use circular approximation to flatten path and offset sections ½tþ2 ; 1	.

Other cases Handled similarly.

P0 

P2 

P3 

P1

r 

s 

Q

O

A B’

R

t=0

t=1

t ’

f B

Fig. 1. Circular approximation to cubic Bézier path curve, Q

(defined by control points P0,y,P3) at t ¼ 0.
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The achieved flatness of the curve segments ½�tf ; 0	
and ½0; tf 	 will be less than the transverse displacement

sðtf Þ.
3 Since the maximum transverse displacement for

these two segments are of opposite signs, we can merge

these segments into a single segment having the

parametric range ½�tf ; þtf 	, and flatten it. Transform-

ing this parametric range into the corresponding

parametric range in the original curve yields ½t�1 ; tþ1 	

where t�1 ¼ t1 � tf ð1� t1Þ and tþ1 ¼ t1 þ tf ð1� t1Þ. A

similar parametric range ½t�2 ; tþ2 	 is found surrounding

the second inflection point t2 (if it exists). Thus, any

intersection of the calculated parametric ranges ½t�1 ; tþ1 	

and ½t�2 ; tþ2 	 with the range ½0; 1	 allows replacement by a

single linear segment for the path curve, and therefore

also for both offset curves.

An arbitrary (infinite) cubic Bézier curve having

inflection points is partitioned into five regions, by

successively t�1 ; t
þ
1 ; t

�
2 and tþ2 . Each endpoint of the

segment to be rendered can be in one of the five regions,

yielding a total of 21 cases. Any portion of the curve

overlapping regions ½t�1 ; t
þ
1 	 or ½t�2 ; t

þ
2 	 can be approxi-

mated by a linear segment . Actually, there is a set of ten

additional cases, representing cusps, in which t�2 ptþ1 .

Here, the regions are instead delimited by successively

t�1 ; tcusp and tþ2 . In these cases, any portion of the curve

segment overlapping regions ½t�1 ; tcusp	 or ½tcusp; t
þ
2 	 can be

approximated by a linear segment. The treatment for a

sample of cases, including the cusp case, is summarized

in Table 1.

In Table 1 the t
1;2 values are the approximations

calculated above. Note that in the third case, there is an

overlap between intervals ½t�1 ; tþ1 	 and ½t�2 ; tþ2 	, repre-

senting a cusp, or near-cusp. In this case, tcusp represents

the point nearest the cusp, and straight line segments

approximate the ranges ½t�1 ; tcusp	 and ½tcusp; t
þ
1 	. The

sharp point of the cusp is thereby approximated.
3In the circular approximation used above it was smaller by a

factor of 4, but here we make no such assertion, and use the

conservative value.
At this point, the curve can be split at t�1 ; t
þ
1 ; t

�
2 and tþ2

(where these points exist and fall within the range ½0; 1	),
with each section having its own set of control points.

The purely curved sections generate approximating

polylines as shown in Section 4 (for path curves) and 5

(for offset curves).
4. Bézier path curve flattening

A cubic Bézier segment, Q, having no inflection

points, and defined by control points P0; . . . ;P3, can be

approximated by a polyline using the following techni-

que. First, we approximate the beginning of Q (around

P0) by a circular arc having radius R, the same direction

and curvature as Q at t ¼ 0, and its center at O in a

direction orthogonal to the curve. We define an r–s

coordinate system aligned to the curve at t ¼ 0, as

shown in Fig. 1. We find the value t0 such that
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R � OA ¼ f , the flatness. For f5R, the curve from B to

B0, corresponding to the parametric range [�t0,t0], can be

approximated by the line segment BB0which closely

meets the flatness criterion, f.

Referring again to Eq. (1)

r ðtÞ ¼ r0 þ 3 ðr1 � r0Þ t þ 3 ðr2 � 2r1 þ r0Þ t2

þ ðr3 � 3r2 þ 3r1 � r0Þ t3,

s ðtÞ ¼ s0 þ 3 ðs1 � s0Þ t þ 3 ðs2 � 2s1 þ s0Þ t2

þ ðs3 � 3s2 þ 3s1 � s0Þ t3.

Because of the position and alignment of the r–s

coordinate system, we see that r0 ¼ s0 ¼ s1 ¼ 0, yielding

r ðtÞ � 3r1t þ 3 ðr2 � 2r1Þ t2 þ ðr3 � 3r2 þ 3r1Þ t3;

s ðtÞ � 3s2t2 þ ðs3 � 3s2Þ t3:

By the assumption of small t, the lower-order terms

are dominant, and so

r ðtÞ � 3r1 t;

s ðtÞ � 3s2 t2:

Thus, if we are trying to achieve a flatness f0 on the

path curve, we can calculate the value of t0 where the

curve deviates from its chord as follows:

s ðt0Þ ¼ f 0
¼ 3s2t02;

i:e: t0 ¼
ffiffiffiffiffiffiffi

f 0

3js2j

q
:

The modulus in the denominator takes care of

positive or negative curvatures.

By simple extension, we can approximate the curve in

the parametric range ½0; 2t0	 by a linear segment

P0Qð2t0Þ, also closely meeting the flatness criterion, f.
0

0.05

0.1

0.15

0.2

0.25

0.3

1.025 1.125 1.225 1.325 1.425 1.5

#Points (RS

F
re

qu
en

cy

Fig. 2. Distribution of ratio of number of segments generated by
The segment is now subdivided at 2t0 provided it is

less than 1. The first subsegment is replaced by a linear

subsegment from Q(0) to Q min ð2t0; 1Þð Þ, and the

second subsegment is further reduced in the same way

as just described. Thus, the curved section of the curve is

approximated by a polyline such that the achieved

flatness of each subsegment is very close to the required

flatness. Only the last subsegment may have an achieved

flatness between 0 and 1.
4.1. Segment reduction performance

The goal is to efficiently flatten a Bézier segment. We

will compare the number of linear segments generated

by our circular approximation algorithm (CA) with the

number generated for the same curve by recursive

subdivision (RS). The recursive subdivision algorithm

we used uses the maximum deviation calculation method

of Hain [4], which is more precise and no slower than

conventional techniques for determining this value.

To generate a representative collection of 10,000 test

curves, which attempts to cover a reasonable distribu-

tion of practical Bézier curves, we used a canonical

representation [8], in which the first three control points

are at (1,0), (0,0) and (0,1), and the fourth control point

varies over a 100� 100 grid from –3 to +3 in both x and

y. The flatness criterion was fixed at 0.0005 (a typical

relative resolution—however, the results were relatively

insensitive to this value.)

For each of the test curves, the ratio of number of

segments generated by both the RS and the CA

algorithms was determined. The distribution of these

ratios is given in Fig. 2. The ratios fall in the range from

1 to 2, with the mean being 1.496.
25 1.625 1.725 1.825 1.925 2.025

)/#Points (PA)

recursive subdivision (RS) to circular approximation (CA).
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Fig. 3. Distribution of relative achieved flatness for CA algorithm.

0

0.01
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Relative achieved flatness

F
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Fig. 4. Distribution of relative achieved flatness for RS algorithm.
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The relative achieved flatness for all segments of all

curves was determined for both the algorithms. As can

be seen in Fig. 3, the distribution of the achieved flatness

values in the CA algorithm, is very tight about the value

1. In fact, 95% of all segments fall within 3% of the

specified value of f. This should be compared with the

distribution of relative achieved flatness values for RS

given in Fig. 4, which shows a large proportion of the

segments have a value considerably below the optimal
value of 1. Of course, by the nature of the RS algorithm,

there are no segments whose achieved flatness exceeds f.
4.2. Run-time performance

The distribution of the ratio of RS run-time over CA

run-time, collected over the 10,000 curves described

above, is shown in Fig. 5. Codes were written in C++,
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Fig. 5. Distribution of ratios of recursive subdivision (RS) to circular approximation (CA) run-times.
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Fig. 6. Left offset curve.
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Fig. 7. Right offset curve.
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and run on a 1.8GHz Intel machine under MS

Windows-XP. The mean speed-up is 1.37.

The reason for the CA speed-up is attributed to the

facts that (1) fewer segments are generated, (2) no

calculation of maximum deviation is required, and (3)

the code is iterative rather than recursive.
5. Flattening cubic Bézier offset curves

Let Qþ and Q� denote the left and right offset curves

at a distance d=2 (half-thickness) from Q, a cubic Bézier
segment defined by control points P0; . . . ;P3. We will

assume that either no inflection points exist in the path

curve, or that they are sufficiently removed from the

parametric range ½0; 1	 (i.e., there is no overlap between

either ½t�1 ; t
þ
1 	 or ½t

�
2 ; t

þ
2 	 and ½0; 1	). This condition will be

true for each of the ‘‘curved’’ sections of Q after it has

been partitioned in a way described in Section 3.

Furthermore, the curvature of this (sub)segment will

be exclusively to the right or to the left. The algorithm

processes Q twice, with the first pass generating a
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polyline approximating Qþ and the second pass

generates the polyline approximating Q�.

Fig. 6 shows a thick Bézier curve Q defined on control

points P0ðx0; y0Þ; . . . ;P3ðx3; y3Þ, but drawn relative to an

r–s coordinate system with the origin being at P0, the

start of the curve at t ¼ 0, the r-axis being oriented along

the velocity vector of the curve at t ¼ 0 (i.e., toward P1),

and the s-axis being right-handed orthogonal to the r-

axis. The control points relative to this coordinate

system are P0ðr0; s0Þ; . . . ;P3ðr3; s3Þ.
Over a sufficiently small range ½�t0;þt0	, the path

curve can be approximated by a circular arc of radius

OP0 ¼ R. The offset curve can therefore be approxi-

mated by a circular arc having the same center, O. We

wish to find the parametric value t0 of a point B0 on the

path curve such that the maximum transverse deviation

of the offset curve from the line AB is equal to the given

flatness, i.e., AC ¼ f .

Now consider point B0 on the path, at coordinate

r ðt0Þ; s ðt0Þð Þ calculated (see Eq. (1)) as

r ðt0Þ ¼ r0 þ 3 ðr1 � r0Þ t0 þ 3 ðr2 � 2r1 þ r0Þt
02

þ ðr3 � 3r2 þ 3r1 � r0Þt
03,

s ðt0Þ ¼ s0 þ 3 ðs1 � s0Þ t0 þ 3 ðs2 � 2s1 þ s0Þt
02

þ ðs3 � 3s2 þ 3s1 � s0Þt
03.

Since P0 is at the origin, and the r-axis is tangential to

the path, we have r0 ¼ s0 ¼ s1 ¼ 0. Thus,

r ðt0Þ ¼ 3r1t0 þ 3 ðr2 � 2r1Þt
02 þ ðr3 � 3r2 þ 3r1Þt

03;

s ðt0Þ ¼ 3s2t02 þ ðs3 � 3s2Þt
03:

By the assumption of small t, the lower terms are

dominant, and

rðt0Þ � 3r1t0;

sðt0Þ � 3s2t02:
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Thus, if we are trying to achieve a (positive) flatness f0

on the path curve, we can calculate the value of t0 such

that the curve ½0; t0	 deviates from its chord as follows:

s ðt0Þ ¼ f 0
¼ 3s2t02;

i:e: t0 ¼
ffiffiffiffiffiffiffi

f 0

3js2j

q
:

The maximum deviation of the left offset curve from

its chord can be related to the maximum deviation of the

path curve by noting that the triangles nOAB and

nOA0B0 are similar, as are nABC and nA0B0P0. It can

easily be seen that

f

f 0 ¼
AC

A0P0

¼
AB

A0B0
¼

OB

OB0
¼

R � d=2

R
¼ 1�

d

2R
,

where d is the thickness of the Bézier curve. Here, we

need the radius of curvature, R. For small t0, we may

assert that

A0B0 � r ðt0Þ � 3r1t0.

From Pythagoras we have

R2 ¼ rðt0Þ2 þ R � s ðt0Þð Þ
2;

i:e: R ¼
s ðt0Þ2þr ðt0Þ2

2s ðt0Þ
�

r ðt0Þ2

2s ðt0Þ
�

3r2
1

2s2
:

The sign of the radius depends on the sign of s2, which

determines whether the curvature is to the left (positive)

or to the right (negative). Note also that s2 will not be

zero because of the assertion that we are sufficiently

distant from inflection points (ranges immediately

surrounding inflection points are handled separately in

Section 3).

The ‘‘effective’’ flatness f0 required for the path curve

to ensure the required flatness f for the left offset curve is
1.55 1.85 2.15 2.45 2.75
ts/CA Segments

r of generated segments.
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4Of course, a thick-looped Bézier curve will necessarily

produce a self-intersecting outline.
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thus

f 0
¼

f

1� ds2
�
3r21

.

We are actually interested in the magnitude of the

maximum deviation. The required t0 is calculated as

t0 ¼

ffiffiffiffiffiffiffiffiffi
f 0

3 s2j j

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

3 s2j j 1� ds2
�
3r21

	 

s

defining a point on the path curve. The corresponding

point on the left offset curve (i.e., the polyline vertex) is

calculated at a perpendicular distance of d/2 to the left of

the path curve.

Under the assumption of small t0, and a circular

approximation, the maximum transverse deviation for

the range ½�t0;þt0	 is the same as ½0; 2 t0	. Thus, we can

subdivide the curve at

t ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

3 s2j j 1� ds2
�
3r21

	 

s

(2)

such that the offset curve corresponding to the first path

sub-curve has the required flatness f. The only other

requirement is that the bracketed term in the denomi-

nator is positive. This will always be true if the curvature

is to the right for the left offset curve (i.e., the offset

curve is on the ‘‘outside’’ of the curve.) It will also be

true if the radius of the path curve is greater than the

half-thickness (i.e., either the thickness or the curvature

is not too great.)

If the bracketed term is negative, the offset curve has

retrograde motion, and is caustic. We handle this

situation by replacing the term by its modulus to

calculate the forward progress in t, but do not

append a linear segment in the approximating polyline,
thereby avoiding a self-intersecting polyline approxima-

tion.4

Fig. 7 shows the right offset curve, Q�. The

mathematics is similar to the Qþcase, with the result

that here the path curve is subdivided at

t ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

3 s2j j 1þ ds2
�
3r21

	 

s

(3)

defining a point on the path curve. The corresponding

polyline vertex on the right offset curve is calculated at a
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5The codes for both algorithms, and an interactive testing

platform, may be obtained from thain@usouthal.edu
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perpendicular distance of d/2 to the right of the path

curve.

5.1. Segment reduction performance

The goal is to efficiently flatten Bézier offset curve

segments. We will compare the number of polyline

segments generated by our circular offset approximation

algorithm (COA) with the number generated for the

same curve by recursive subdivision with offset point

calculation (RSO) described in Section 1. We also

compare the maximum deviation of the offset curve

from each polyline segment (achieved flatness) for both

algorithms.

The same 10,000 curves discussed in Section 4.1 were

used here for test purposes The curve thickness was set

to 0.5, representing a reasonably thick curve, given the

positions of the first three control points. All curves

having a section where the path curve radius was less

than 125% of the curve half-thickness were discarded as

pathological.

Fig. 8 shows the distribution (frequency) of curves as

a function of the ratio of the number of segments

generated by the RSO and the COA algorithms. Overall,

RSO produces 42% more segments than COA.

Also importantly, the distribution of the segment

vertices is such that the achieved flatness (on a scale

relative to the specified flatness) is much more consis-

tently around the desired value of 1 for the COA

algorithm, as is shown in Fig. 9. It should be noted that

achieved flatness values 20% over the specified flatness

do not significantly affect the perceptual smoothness of

the curve. The RSO algorithm generates many more

than the required number of segments on the inside

offset curve sections. The only reason that RSO does not

frequently generate an insufficient number of segments
on the outside offset curve sections is that RSO tends to

be overly conservative in meeting the flatness criterion

(for the path curve). This effect can be seen in the sample

COA and RSO flattened offset curves in Fig. 10.

5.2. Run-time performance

Fig. 11 gives the relative RSO to COA run-time ratio

distribution. The average ratio is 1.04. However, more

common instances (well-behaved curves that are more

likely to occur in practice) run almost 20% faster using

the COA algorithm. The reasons for this observed

speed-up in the COA were the same as those for the CA

algorithm.
6. Conclusion

Algorithms for generating a polyline approximation

(flattening) for both the path and offset curves of a

planar cubic Bézier curve segment have been described.

The path flattening algorithm (CA) is shown to be more

efficient than recursive subdivision by generating only

2/3 as many segments, while 97% of all segments fall

within 4% of the flatness criterion. The code5 runs 37%

faster than recursive subdivision. The offset curve

flattening algorithm (COA) is shown to be more efficient

than recursive subdivision by generating only 70% as

many segments, but, just as importantly, 94% of all

segments fall within 20% of the flatness criterion,

although these numbers are somewhat dependent on

the half-thickness. The COA code runs as fast as

recursive subdivision.
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The major contribution of this research was to

provide fast algorithms to generate polyline approxima-

tions to cubic Bézier segment path curves, and their

offset curves, using the least number of vertices, but

while maintaining the flatness criterion. Both thick and

thin cubic Bézier curves can be quickly rendered with

perceptual smoothness using the algorithms presented.
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