
Piecewise Linear Approximation

of Bézier Curves

Kaspar Fischer

October 16, 2000

Abstract

In computer graphics one often needs to convert a given Bézier curve
to a polygon (i.e., to a sequence of connected line-segments). These notes
explain one way, invented and copyright by Roger Willcocks [2], on how to
elegantly compute such piecewise linear approximations of Bézier curves.

1 Introduction

In computer graphics one is quite often confronted with the rendering of two-
dimensional cubic Bézier curves. For this and other purposes we would like
to convert a given Bézier curve to a polygon, that is, to a series of connected
line-segments as illustrated in Figure 1.

� �

� �� �

� �

� � � �� � � �

7→

7→

� �

� �� 	

� 


� 	 � �� 
 � �

Figure 1: Two curves (left) and their approximations (right).

So assume that we are given a curve b(t) with start-point b0, the two control-
points b1, b2, and end-point b3:

b(t) = (1− t)3b0 + 3 (1− t)2tb1 + 3 (1− t) t2b2 + t3b3.

There are several possibilities to find polygonal approximations. We could, for
instance, sample the curve at some points ti (i = 1, . . . , n) in parameter-space.
But it’s not clear how to choose the values ti (and the number n) such that
flat parts of the curve are sampled with low density and strongly bent parts are
approximated with a larger number of line-segments.—It seems best to use a
method based on “recursive subdivision.”

1



2 Recursive Subdivision

Recursive subdivision, called the de Casteljau construction in this context, is a
way to “split” a Bézier curve b(t) into two smaller Bézier curves, a left one l(t)
and a right one r(t). The scheme works as illustrated in Figure 2:

� ����� �

� �

� �
� �

� �

� �

	

� �
� 
�� � �

� 
 � � 


Figure 2: The de Castejau construction.

As indicated in the figure, we calculate the mid-point m between b1 and b2

and proceed likewise for l1 and r2, l2 and r1 and finally l3. Then, the Bézier
curve through points l0 and l3 with control-points l1 and l2 coincides with the
first part of the original Bézier curve. Similarly, the curve through points r0 and
r3 with control-points r1 and r2 exactly matches the right part of the orginal
curve. To see that this is correct, we can compare the polynomial b(t) (the
original curve) with the polynomial l(t) of the left curve: If b(t) equals l(2t), the
two curves are identical. In Maple we can easily verify the identity in question;
here’s the test for the x-coordinates:

> bezier:= (b,t) -> (1-t)^3*b[0] + 3*t*(1-t)^2*b[1] +

3*t^2*(1-t)*b[2] + t^3*b[3]:

> m:= (b[1]+b[2])/2:

> l[0]:= b[0]: r[3]:= b[3]:

> l[1]:= (b[0]+b[1])/2:

> r[2]:= (b[2]+b[3])/2:

> l[2]:= (l[1]+m)/2:

> r[1]:= (m+r[2])/2:

> l[3]:= (l[2]+r[1])/2: r[0]:= l[3]:

> expand(bezier(b,t)-bezier(l,2*t));

0

Thus the idea to approach our problem is to recursively subdivide the orginal
curve b(t) until we obtain “sub-curves” which are “sufficiently” flat to be ap-
proximated by straight line-segments. In pseudo-code this looks as follows:

2



void flattenCurve(Curve c) {

if (isSufficientlyFlat(c))

output(c); /* output as line-segment */

else {

Curve l,r;

subdivide(c,l,r); /* split c into curves l and r */

flattenCurve(l); /* enumerate left curve */

flattenCurve(r); /* enumerate right curve */

}

}

3 Is this Curve Flat?

The question remains how to check whether a given curve is “sufficiently” flat.
The following approach, both in theory and implementation, is due to Roger
Willcocks, author of the RoPS PostScipt interpreter1. The method is copyright
by Roger Willcocks, and I am using it here with his generous permission [2].

We will measure the flatness of a curve by means of a positive number:
Curves with flatness zero will be considered totally flat, while higher and higher
values more and more strongly suggest that the curve be further subdivided.
Thus, the idea is that the user specifies a tolerance tol such that no curve with
flatness greater than tol is approximated by a straight line but is subdivided
further instead. Notice that since we are only interested in rejecting non-flat
curves, it isn’t a problem if we mistakenly continue the subdivision process for
a curve which is already flat enough.

More precisely, we define the flatness of a curve b(t) to be the number

f = max
0≤t≤1

d(t) where d(t) = ‖b(t)− l(t)‖.

Here, l(t) is the line-segment l(t) = (1− t) b0 + tb3 from the curve’s start- to its
end-point. Figure 3 illustrates this definition.

� � � �

� � � �

�

Figure 3: Definition of the flatness f .

The line l(t) can be represented as a Bézier curve with start-point b0, end-
point b3, and control-points (2b0 + b3)/3 and (b0 + 2b3)/3, respectively:

l(t) = (1− t)3b0 + (1− t)2t [2b0 + b3] + (1− t) t2 [b0 + 2b3] + t3b3

You can easily verify that this curve has indeed constant velocity by computing
l′(t) which is b3 − b0, independent of t. (Or just multiply out the expression

1See http://www.rops.org/

3



for l′(t) and collect terms—you’ll end up with l(t) = (1−t) b0+tb3.) Continuing,
we have

b(t)− l(t) = (1− t)2t (3b1 − 2b0 − b3) + (1− t) t2 (3b2 − b0 − 2b3)

= (1− t) t ((1− t)u + t v) ,

for u = 3b1 − 2b0 − b3 and v = 3b2 − b0 − 2b3. Hence

d2(t) = ‖b(t)− l(t)‖2

= (1− t)2t2
(

((1− t)ux + tvx)
2
+ ((1− t)uy + tvy)

2
)

Since max0≤t≤1 (1− t)2t2 = 1/16 and max0≤t≤1 [(1− t) a + tb] = max{a, b} for
any two constants a, b, we finally obtain

f2 = max
0≤t≤1

d2(t) ≤ 1/16
(

max{u2
x, v2

x}+max{u2
y, v2

y}
)

.

(As Roger Willcocks notes, one could easily derive a better bound, but the above
can be speedily computed.) In pseudo-code this looks as follows:

bool isSufficentlyFlat(Curve c) {

double ux = 3.0*c.b1_x - 2.0*c.b0_x - c.b3_x; ux *= ux;

double uy = 3.0*c.b1_y - 2.0*c.b0_y - c.b3_y; uy *= uy;

double vx = 3.0*c.b2_x - 2.0*c.b3_x - c.b0_x; vx *= vx;

double vy = 3.0*c.b2_y - 2.0*c.b3_y - c.b0_y; vy *= vy;

if (ux < vx) ux = vx;

if (uy < vy) uy = vy;

return (ux+uy <= tolerance); /* tolerance is 16*tol^2 */

}

The test is quite efficient and seems to be very robust in practice. Even for
degenerated curves like the curve b in Figure 1, the test works as expected:
Although this curve is a line (which one would normally consider “flat”), it
should not (and will not) be considered flat here since we need to subdivide it
further to find the start- and end-point of the described line.

Also, our definition of flatness quite nicely matches the one used in Adobe’s
PostScript language [1] (page 669, operator setflat flatness): “Flatness is the
error tolerance of this approximation; it is the maximum allowable distance of
any point of the approximation from the corresponding point on the true curve,
measured in output device pixels.” So our number tol has the same semantics
as the argument flatness to the operator setflat.

References

[1] Adobe Systems Incorporated. PostScript Language Reference. Addison-
Wesley, Reading, MA, USA, third edition, 1999.

[2] R. Willcocks. September 2000. Personal communication to K. Fischer.

4


